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Abstract—Heat transfer to a fluid with constant properties is analysed for forced convection between
two parallel plates. The plates have a finite heat capacity, and heat is supplied to them in an arbitrary
manner with both time and axial position. The wall is assumed sufficiently thin or highly conducting
so that the temperature variation through the wall thickness can be neglected. The fluid temperature
is variable over the channel cross section, but the fluid velocity is assumed constant throughout the
channel (slug-flow condition). The energy equation is laminar. A general method of solution is given
and then some illustrative examples are carried out. These include uniform wall heating that varies
sinusoidally in time, and heating varying sinusoidally with axial distance and exponentially in time.

NOMENCLATURE

Greek symbols

A, C, D, constants; a, thermal diffusivity of fluid, k/pcp;
half width of spacing between parallel Vn, eigenvalue, see equation (10);
plates; o, dimensionless time, 7v/a®*Pr = 7a/a?;
thickness of channel wall; 0, dummy @ variable;
specific heat at constant pressure; v, kinematic viscosity of fluid;
eigenvalue, nz; o, fluid density;
thermal conductivity of fluid; T, time.
dimensionless length of channel,

4(//a)/ RePr; Subscripts

length of channel; g, refers to heat generated in (or
ratio of wall and fluid heat capacities, supplied to) wall;

bpwCp, wlapcy; m, refers to the mth column of the
Prandtl number of fluid, v/a; characteristic line mesh;
dimensionless heat flux, g/gy; r, refers to rth row of the characteristic
local heat addition per unit area at line mesh (except in ¢qr where r
channel walls; ¢,, reference value; denotes reference value);

Reynolds number, #da/v; w, refers to wall.

dimensionless temperature,

(t — tok/qra;
temperature; ¢,, temperature of fluid
entering channel, (a constant);
fluid velocity; # mean fluid velocity
over channel cross section;
dimensionless co-ordinate,

4(x/a){ RePr;
axial distance from entrance of
heated section of channel.

INTRODUCTION

In THE flow channels of nuclear reactors or
nuclear rocket engines, transient heating con-
ditions are encountered during power changes,
startup, and shut down. In addition to having
time variations, the wall heat flux can also change
with axial position along the channel because of
spatial variations in fuel loading or neutron
flux. This type of situation has promoted
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interest in the general class of problems in-
volving channel flows with arbitrary transient
heating at the walls. When analysing this type
of problem some simplifying assumptions are
generally required. In one type of approach the
temperature and velocity distributions in the fluid
and the temperature distribution in the wall
are all assumed one-dimensional. A constant
convective heat-transfer coefficient is then
specified to relate the local wall and fluid
temperatures. Some examples of this type of
analysis can be found in [1, 2, 3, 4, 5].

In other instances the wall heat capacity has
been neglected. This has provided sufficient
simplification to make it possible to solve for
the temperature distribution in the fluid which
eliminates the restriction of specifying a heat-
transfer coefficient. For simple wall boundary
conditions the correct velocity distribution can
also be accounted for, e.g. [6]. However, for
more complex conditions it has been necessary
to utilize the slug flow assumption, that is
consider the velocity one dimensional, e.g. {7].

In [7] the solution was provided for slug flow
in a channel with zero wall heat capacity and
with wall heating that can vary arbitrarily with
both position along the channel and time. No
simplifying assumptions were made with respect
to the fluid temperature distribution. With this
formulation as a beginning the present paper
will show how solutions can be found which
include wall heat capacity and have arbitrary
wall heating with position and time. During a
transient, part of the energy supplied to the
channel walls is stored within the walls while
the remainder is transferred into the fluid.
Hence the heat flux that the fluid receives from
the wall is generally a function of both distance
and time; this is the case treated in [7]. However,
with wall heat capacity, the heat flow to the
fluid is an unknown function as it depends on
the transient heat storage within the wall. As
shown in the analysis, by coupling the wall
and fluid heat-transfer equations it is possible
to determine the amount of heat flow into the
fluid and from this the wall temperatures are
found. After the general method is discussed,
some illustrative examples are carried out.
These include a wall heat flux that oscillates
sinusoidally with time, and one that varies
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sinusoidally with axial position and exponen-
tially with time. The latter is typical of a reactor
runaway transient.

ANALYSIS
The geometry under consideration is illus-
trated in Fig. 1. Fluid with a uniform tempera-
ture ¢, enters a channel consisting of two
parallel plates. The fluid velocity is assumed to
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FiG. 1. Parallel plate channel with wall thickness, b,
and arbitrary wall heat generation, g,.

remain constant throughout the channel (slug
flow assumption), that is, the variation of
velocity with the y co-ordinate is not taken into
account and the flow is incompressible. At or
within the channel walls there is a specified
heat generation g4(x, ) which can vary arbi-
trarily with both axial position and time. Part
of this heat generation will be stored in the
walls by virtue of the wall heat capacity, and the
remainder is the quantity g(x, ) that is trans-
ferred from the walls to the fluid. The walls are
assumed to be sufficiently thin so that at any
time, the wall temperature at each axial location
can be assumed constant over the thickness b.
The temperature in the fluid, however, is a
function of location y within the cross section
as well as x and 7. For all of the cases treated
here the walls and fluid are considered to be
initially isothermal at the entering fluid tempera-
ture ty. Then at time equal to zero the wall heat
generation is suddenly applied equally to both
walls. Since the wall heat generation is specified,
the quantity of physical interest to be computed
in the analysis is the wall temperature as a
function of position and time. The conditions of
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an initially isothermal channel with zero heating
are not as restrictive as they may appear. For
example, consider a tramsient beginning from
an initial steady state condition with uniform
wall heating. This can be conveniently reduced
to the conditions of the present computational
procedure by considering a fictitious earlier time
when ihe uniform heating is applied to an
isothermal channel. The resuiting transient is
computed until steady state is achieved, and the
variation in wall heat generation is then con-
tinued to study the desired wall heat flux
transient.

Basic equations

The first step in the analysis is to form a
heat balance on an element of the wall as
shown by the shaded volume in Fig. 1. The
heat balance states that the change of energy
stored within the element is equal to the heat
generated in the wall minus the heat transferred
to the fluid. This gives

M

By using the dimensionless variables defined in
the Nomenclature, equation (1) can be placed
in the form

oTw _

b pucp, w = qq(x, 7) — q(x, 7).

N Q(X, 0). (la)

The heat quantities Q, and Q have been non-
dimensionalized relative to gr which is any
convenient constant reference wall heat genera-
tion. The parameter N is equal to bpucp, w/apcy
which is the ratio of the wall heat capacity to
the heat capacity of the fluid. Hence, N -0
provides the limiting case of negligible wall
capacity. Equation (la) can be integrated to
obtain Ty, and the boundary condition is
employed that the channel is initially isothermal,
Tw(X, 0) = 0. This gives,

Tu(X, ©) = 1{ 0,(X, 6) df — lj O(X, 6) db.
@

The next step is to consider how the con-
ditions at the inside surface of the walls effect
the heat transfer within the fluid. The fluid is
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being subjected to a wall heating Q which is a
function of both axial position and time so a
solution is needed for a channel flow with this
type of arbitrary wall heating. For slug flow
in a channel this solution is given in [7] and
can be used here without modification. Since
the derivation is given in detail in [7), it does not
seem worthwhile to repeat it here, and the
reader is referred to [7] for further information.
The solution is in two parts. For the region where
X > 0 the wall temperature disiribution is
given by:

YMKQ:FQW~@+&®M
0

) 2]
+2Zf”ﬂ‘@X~@+&®HMM-GM
n=1 0

For the region where X < O the following
expression applies:

]

O(X — 6 -+ 6, 6) df

0—X

mm@zj

5} (2]
+23 e‘”n’@I O(X — O+ 6, 8) ™ d6. (3b)
n=1 o—X

Equations (2) and (3) are to be solved simul-
taneously for Ty(X, ) and the most convenient
procedure is to first eliminate Ty by substituting
(2) into (3). This gives the following relations
for Q:

For X > ©
Lfe 8) dé N 0) do
v, atx o~ || oo o

:rQ(XA@Jre,e)de - (4a)

0 [}
+22r”q‘QX—@+Q®%”M.
0

For X < O,

1 (¢] 1 (2]
NLQ&K@M—NLQ@ﬁNB

:r O(X — 6 + 0, 6)dé  (4b)

O(X — 0+ 6,6) e db.

© ©
+22% e“F"’OJ

0—~X
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Since Q4(X, ©) is a specified quantity, equation
(4) can be solved for the single unknown Q(X, ©).
After this is found, the wall temperature, which
is the quantity of physical interest, is found
from the integrations in (2). The next step,
then, is to provide a means for solving (4).

In Fig. 2a the X, © plane is shown. A 45°
diagonal line divides the area into the two
regions in each of which one of equations (4)
apply depending on whether X is greater or less
than @. The significance of the diagonal line
can be shown by considering a fluid element
that enters the tube at time = = 0. This element
reaches location x at 7 = x/i, and the dimen-
sionless variables have been chosen such that
this is equivalent to @ = X (that is, the velocity
in the dimensionless system is unity). Hence, the
line X = @ in Fig. 2a traces the path of the
fluid that starts from the channel entrance at
the initiation of the transient. The regions
below and above the diagonal are physically
different. For X > © the channel contains fluid
that was already within the channel when the
transient began, while for X < @ the fluid
entered the channel after the transient had
started. Since the solution method is the same
for both of equations (4), only (4a) will be
discussed for the moment. An integral such as

X<®

e
f Q(Xx-8+6,8) dG'\\
0
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{2 O(X, 6) d6 is carried out at constant X with
6 as a dummy time variable. Hence, this type of
integral is along a vertical line in Fig. 2a. An
integral of the type [ (X — 6 + 6,0)d0 is
carried out along a 45° diagonal line and inte-
grates the heat flow following the fluid element
that arrives at location X at time ©. The diagonal
and vertical lines form a grid of characteristic
lines in the X — O plane. The integration along
vertical lines accounts for the heat transferred
from the wall at each location, while the integrals
along the diagonals provide the convective
energy moving with the fluid. It will be shown
that the desired values of Q can be computed
at successive time intervals in the X — @ plane
by knowing the previous time history. Before
this is done the boundary conditions must be
discussed.

Boundary conditions

At @ = 0 the wall heat generation is initiated.
At this instant the wall temperature is still
equal to the fluid temperature so there is no
heat transfer from the wall to the fluid. Hence,
at @ =0: 0 =0 for all X > 0. At X = 0 the
fluid is always maintained at a constant entering
temperature and the heat-transfer coefficient is
infinite as the thermal boundary layer has zero

X>@

(¥-8,0)

(x.0) /

FiG. 2a. Heat flow integrals along characteristic
lines in the X — O plane.
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X<©®
rX=0
]
J
O,r
@=0; (0,7) Lr 2,r m,r
- — -
o2 1,2 2,2 m2
0=¢, (0,2) , ) ,
X>0
e AX. = ,
0,1 J\
Q=Qg (Q;l) hi f 2,1 m, |
A®
A
0,0 1,0 2,0 ) m,0
0=0g (0,0) 0:0 o=0 0___0
X

FiG. 2b. Grid points and boundary conditions for
numerical solution.

thickness. Consequently, at X =0 the wall
temperature always remains fixed at the entering
fluid temperature and 9Tw/@0|x-o = 0. From
(1a) this gives the condition, at X =0: Q = Qy
for all @ greater than zero. The single point
X = 0 = 0 is singular in that either condition
could apply, but this does not lead to any
difficulty, as either condition can be arbitrarily
selected. This is similar to computing the tem-
peratures near the corner of a rectangular plate
when the two edges are at different tempera-
tures.

Numerical solution

The solution to equations (4) can be best
iltustrated by considering a few specific points
on the grid shown in Fig. 2b. It will be necessary
to set the integrals in (4) into finite difference
form, and for all except the second integral
on the right side the trapezoidal rule is used.
This approximation would not be very accurate
for the second integral on the right side due to
the rapid variation of the exponential function
e™*0 for large F,. For this integral a good
approximation is found by noting that the
function Q would be expected to be fairly
smooth and hence segments of the Q variation
can be approximated quite well by straight

lines. In the range between 6, and 6,4 the
function Q(f) is approximated by

06) = 0y + (6 — ) ( Do — &).

Op1 — by

&)

Then the exponential variation in the integrand
can be integrated out analytically. The integral
0,11
011
becomes

JZ* [Qp + (0 — 6y) (Q”“ — Q—’“)] e do,

Oy — Oy
and this integrates to

Q(6) e+ df

1
F —Qp e + Qpireftr

Fl_ (,Qze%z _9—,92) (eme,, - e"""’n+1)]. ©

Consider for example the point (2,1) in
Fig. 2b. This is in the region where X > O so
(4a) is used. By using the trapezoidal rule and

+
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equation (6) this is placed in the finite difference
form:

460 40
—TN(Qyﬂ,I + Qpo0) — ‘Q'N(Qz,l + 0Os,0)

46
= ’2” (Qz,l + QLG)

z e Fn*02,1
+2 > R |- Qe ¢ ()
. 1 (@21 — Oy,
+ Q0,1 €792 +Fi( L A@_;_o)

(an’Gl,o — ef"021 )] .
J

The boundary condition along the X-axis is
then applied which gives Q0= Q5,0=0,
0,0 = 0,,, =0, and it is noted that 6, , = 46.
Applying these relations, (7a) can be placed in
the form for Q,,:

Q5,1 =
Q9>1 + Q!bo

4N
I+ N+A@ZF

This is further simplified by noting that

| N
F: o L
n=1 w=1

e—F..’A@

( P A@) T Fi6

and

so that finally,

0y =
Q!]m + ngo

2N O erede)’
]+N*A@(3 4541@ + 46 Z F )

(7o)

Equation (7b) shows that the points in the second
horizontal row in Fig. 2b are found from those
in the first row. In a similar fashion the points
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in the third row are found from those in the
first two rows. Hence, the solution propagates
forward row by row in time. One more example
will be given; point (2,2). This is on the line
X = 0O and either of equations (4) will apply.
There is a singularity at point (0,0) in that Q can
either equal zero or Q4(0,0). The latter alterna-
tive was arbitrarily selected; hence, points
along X = O will belong to the class computed
from (4b). To obtain Q,,, (4b) is placed in
finite difference form with the aid of (6),

460
flvv(ng,o + 2Q92.1 + Q!J:,z)
46

- fN(Qz.o + 205, + QOa9)
46

= 5 (Qo,o + 2Q1,1 + Q2,2)

\ e o
+2 L, F

n=1

+ — FZ (QQA@Q,O")) X (ef‘-’@«),o — e”»’@m)

—_— Q1 e”'nzgl,l + Q2 2an2@'1.‘.2

+ (Q“’ 2 A—@—Q‘ 1) (emoul — e”””@'—’-‘-’)}. (8a)

The boundary conditions are applied that
Q5,0 =0, 64,0 =0, Qo0 = 04(0,0), 6,,, = 40,
and 0,,==246. Equation (8a) can then be
arranged in the form

[— Qo000 - Oy, eTo1

001 N 1
Qua | (N1 T3 4520
2 Cene 46
* 46 “—Fg"”]*'zw

n=1

(de,o + 2Q92,1 + Qgﬁ.ﬁ)
46 40
- ‘]V Q2,1 - 7 (Q!}o.o + 2Q1,1)

[=o) l 2 .
2> iz (Qny e (~Fido

n=1

= 1) 4 €O Q. (e

— 2e~T"40 1)} (8b)
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In a similar fashion, the finite difference
equations can be placed in a general form for a
point in the mth column and rth row. Form > r,
the points are in the region where X > 0, while
for m < r the region under study is X < 0,
The general relations, which are listed in the
Appendix, are used to compute the Q’s row by
row throughout the X, ® region under con-
sideration. After the Q values are found they
are integrated according to equation (2) to find
Tw. The quantity Gy is specified for each X, 0
point on the grid and hence can have any desired
variation with axial position and time. Now
that the method of analysis has been described
specific examples will be given and discussed.

UNIFORM WALL HEAT ADDITION (Q, = 1)

As a first example, a channel is considered
which is initially isothermal and then has a
uniform heat addition suddenly applied at its
walls. The uniform heat addition is selected as
the reference heat flux ¢, so Qg is equal to
unity. The results are shown in Fig. 3 for various
N values. When N = 0 the wall has zero heat
capacity, while for N = 1 the heat capacity of
the wall is equal to that of the fluid. Parts (a)
and (b) of the figure show the variation of wall
temperature with time at fixed locations along
the channel. The general shape of the curves is
indicated by the set of arrows which show how
the curve is followed for N = 0-2 and X = 0-6.
After heating is applied, the wall temperature
rises for a time and then levels out at a steady
state value. The behavior of the curves can be
explained quite well in physical terms as follows.

Consider first the limiting case of zero wall
capacity, N = 0. This has been previously
studied in [8] and the solution given analyticalily
as:

For ©® < X,
1 N e~ 1@
Tw:@+3—2$\”ﬁ. (93)
For & > X,
1 d e—F,,‘X
Twzx+3—2§ 7 (9b)
pa— n

n=-1
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As discussed previously, if a position X is
considered along the channel, for the time
interval ® < X the fluid starting at the entrance
of the channel at ® = 0 has not yet reached X.
The nondimensional variables are defined in
such a way that the velocity in the dimensionless
system is unity, so that this fluid reaches X when
® = X. As a result the region where X > ©
behaves like a channel which is infinitely long
in both directions since until ® = X the location
at X has not yet been signaled that the channel
has an entrance. When the wali heating is
uniform, the heat convection in the region
X > O is identically zero since the heat carried
into a differential length of the channel is equal
to that carried out by virtue of the behavior
like a doubly infinite channel. Hence for ©® < X
the heat transfer is only by conduction and (9a)
is the same as that for the sudden application
of heat to the surfaces of a solid slab of thickness
equal to the channel width 2a. After a time
© = X has elapsed, the fluid traveling from the
channel entrance reaches X and the wall
temperature is stabilized at the steady state
value.

When N > 0, there is still an initial period
of pure condition at each X location until &
becomes equal to X. This conduction solution
corresponds to that from a slab (the channel
wall) with uniform heat generation and uniform
spatial temperature distribution, to an adjacent
slab (the fluid) of another material. The con-
duction solution for this case is obtained from

91:

IN+ 1

1 1
NS [ TN D

e 7’0

- 22 Y (2N*+ N + 1)

n=1

(10)

where the eigenvalues y, are found from
yn cot y5 = — 1/N. Equation (10) reduces to (9a)
when N — 0. For a given N the curves for all X
follow the results of equation (10) until ® = X.
Then the curves branch off and adjust toward
the steady state values. The steady state tem-
peratures are the same as those reached for
N =0. This arises from the fact that when
there is no further change taking place in the
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F1G. 3a. Wall temperature response for five wall heat capacities after a sudden application of uniform
wall heat flux, Q, = 1 (arrows explain path of curve for the example N = 0-2, X = 0-6).
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FiG. 3b. Wall temperature response for small X and @ for three wall heat capacities after a sudden
application of uniform wall heat flux, @, = 1.
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FiG. 3c. Wall temperature distributions at various
times following the sudden application of a uniform
wall heat flux, Q, = 1.

wall temperature, all of the heat generated in
the wall is being transferred to the fluid. This
is the same condition on the fluid as for N = 0.
The figure indicates how the wall temperatures
for this transient can be obtained simply in an
approximate way. The results for N = 0 can be
computed without difficulty from (9). This gives
the steady state values applicable for all N. For
any N # 0 the initial transient curve can be
found from (10). Then the complete solution
for any X is obtained reasonably well by
fairing the initial curve into the steady state
value.

Fig. 3c is a cross plot giving the temperature
distribution along the channel length at various
times. At each time, for small X part of the chan-
nel has reached steady state and hence each curve
initially follows along the steady state envelope
line which is computed from (9b). At larger X, so
that X > 6, the wall temperature is independent
of X as there is only one-dimensional con-
duction taking place in this region.

HEAT FLUX A LINEAR FUNCTION OF X AND 6
(Q, = X6)

The next example is for a wall heating that
is linear in both X and @. For zero wall heat
capacity (N = 0) the solution can be found by
substituting Q, = X6 for Q in (3). This results
in:

For X >0,
xXe: @3
Tw="y — ¢

+2> la-eme—y

n=1

4 62 __ 2
QQ,FZ,FJ@_“E — e—r,.*@(% — X+ @)] .

n

(11a)
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For X < 6,
;o 0x X
T2 6

o

1
+ZZ'FT

n=1

FiX2—2F2X+2
+ —

[(@ _X)(FX—1)

e-F,,*X(FE; - @+ X)]-

' (11b)

These relations have been plotted as solid lines
in Fig. 4 which gives the axial temperature
distribution at several different times. As
expected from the form of the heat input, the
wall temperature increases with both position
and time. When N > 0 the present analysis
provides curves that are similar in shape to
the zero capacity results except that the time
response is reduced because of heat absorption
within the wall.

F:

o7 —

06

Q
»

(t,~1) kg, a

Q
&

0-2

O
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HEAT FLUX UNIFORM WITH POSITION AND
SINUSOIDAL WITH TIME (Q, = 1 + Csin 2246)

In this example the heat flux is uniform along
the length of the channel, but oscillates sinu-
soidally with time. The case of zero wall heat
capacity (N = 0) is again considered first. To
obtain the wall temperature transients for this
case the expression for Qg is substituted into
(3) which yields:

For X > 0,

1
Tw:@+2%(l —coszwA@)—{—g

o0

) 3 C  (F sin2nA0
=22 [~ a2

n=1

— 2nA cos 2mAO + 2nA e~w@)]. (12a)

0

AXIAL POSITION, X=4x/aRerr

FiG. 4. Transient wall temperature response for the
heat flux variation Q, = XO and three different wall
heat capacities.
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For X <6,

C
Tw= X+ iy [cos 2mA(@ — X) — cos 2mAO)]

e}

1 (e“"""" C
w3222 (5 p oy

n=1

{F? sin 2nA® — 2w A cos 27 AO + e Fa*X

[F2sin 27 A(@ — X) — 27w A cos 2w A(@ — X)]}).

(12b)

A numerical example has been plotted in Fig. 5
for C=1and 4 = 2. When C = 1 the ampli-
tude of the wall heating oscillates between zero
and 2. The frequency is such that a cycle is
completed for every interval of ® = 0-5. The
figure shows the wall temperature behavior with
time at a few different axial positions along the
channel. There is an initial transient period of
pure conduction during which all of the curves
for N =0 follow along the same line. Then
when @ == X each curve moves away from the
common line and adjusts toward a steady
oscillatory behavior. The wall temperatures are
higher for larger X values because of the rise
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of the fluid temperature in the axial direction.

When N > 0 the time response of the wall
temperature is diminished. For N = 0-5 the
behavior is similar to the N =0 case except
that the amplitude of the temperature fluctua-
tions has been decreased. When the wall capacity
is further increased to N = 2, the wall is no
fonger able to follow the heating fluctuations
and the oscillations are completely damped out.
The transient response then becomes the same
as that in Fig. 3 where a steady heating was
applied.

HEAT FLUX SINUSOIDAL WITH POSITION AND
EXPONENTIAL WITH TIME

Q, = (ePo — 1) sinf—/‘—/
L

This type of transient simulates a runaway
power transient that can occur in a nuclear
reactor. It is assumed for simplicity that the
power has an elementary sinusoidal distribution
in the axial direction. A numerical example is
shown in Figs. 6a and 6b for a dimensionless
Iength L = 0-5 and a reciprocal period D = 0-2.
For N = 0 the wall temperatures are again found
directly from (3) by substituting Q, for Q. All
of the curves shown in Figs. 6 are for & > X so

N
Q
12— —-—05
——— 2
— X
0 08
) . \
© 08— / 103 \ ‘ g
s S - .
~
x , \
P06 j \ —
- Ol \\/_ -\ __>\.g
0-4 \ / \ TN /
’ \ = ) '_7 -Ji - BN
//:/ 7] O'gj_r'v II - \
0-2 " 03}
’ o
///
-] | 1 J I |1
0 o2 04 o6 08 -0 112 -4 116 8 20

TIME, @= ta/a?

FiG. 5. Wall temperature response after the sudden application of the wall
heat flux, @y = 1 + sin 476.
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o The results are shown in Figs. 6 for T,, as a
"r function of X at five @ values between 0-5 and
2-5. For each 0, the wall temperatures reach a
010 peak a little past the mid point of the channel,
and then decrease near the end of the channel
009 because of the diminished heat generation in
that region.
0.08 With wall heat capacity included, solutions
are shown for N = 0-5 and 2. As the wall heat
s 007 capacity is increased a greater amount of
K energy is stored in the walls and the time
= 006 response of the channel is reduced. Consequently,
i for a given © the wall temperatures are much
~ 0.05 lower for larger N values.
For zero wall heat capacity, this type of
0-04 transient has been compared in [7] with solu-
tions obtained by assuming a constant heat-
transfer coefficient. The simplified theory gave
0-03 . Lo
a fairly good qualitative indication of the
system behavior for the parameters selected.
0-02 The assumption of a constant heat-transfer
0-01 0-35—
N
0
0 0l 02 03 04 05
o3} —-—093
AXIAL POSITION, X=4x/aRePr _ 2 [ —
w8 N\
FiG. 6a. Wall temperature response for a transient A k
simulating a nuclear reactor runaway. Q, = (e®%0 — | / .}-2'5 \
1) sin 7.X/0-5. 025 VN

only (3b) is used. Carrying out the integration ! Y
for N =0 o 020 / /f\'\\\ \
T 1 [ebe (D _ner 7rC WX) :n / // N\ \\
W= e T e sin-+- — - cos—— ) /i !
D + (w/L) L L™ 2 ok / ,/ , LN \

L X TN\
—}—ze"(e*x’] + ;(cos?—rL— — l) / / ////?\ : [\\ NN

\ A
\\. \
. o0l /// s N }\
1 . L A
[ DO 3 0 - ~
+2Z(D+F3)2+ (77,/L)2{e [(D+F,.) '// /// \\\ \\
n=1 4 s N \
0054 s N
sin'rLX T X T rareco—x /// \\\
L LT|"L° 4
] | | | |
o 1_¥ F i X 7 X o} 04 o2 03 0-4 05
FyF e\ =S — L% [ AXIAL POSITION, X:=4x/aRe Pr

Fic. 6b. Wall temperature response for a transient

simulating a nuclear reactor runaway. Q, = (€20 —

+ Ze-n 'X)
—e~TtX |,
L 1) sin #X/0-5.




FORCED CONVECTION IN A CHANNEL WITH WALL HEAT CAPACITY

coeflicient should be better as N is increased,
as this reduces the magnitudes of the transient
effects and the behavior becomes more quasi-
steady.

CONCLUSIONS

A general method has been given for obtaining
transient temperatures in a channel following
the sudden application of a wall heat flux that
can vary arbitrarily in the axial direction along
the channel and with time. The method invoives
coupling the heat-transfer behavior within the
fluid to that in the wall and solving the resultant
equations by integrating along a grid of charac-
teristics lines. The principal assumptions are a
uniform fluid velocity throughout the channel
and a constant wall temperature through the
thickness of the wall at each axial position.
The temperature profiles within the fluid are
accounted for, which eliminates the need for
assuming a convective heat-transfer coefficient.
Thus effects such as thermal entrance regions
and unsteadiness in the heat-transfer coefficient
have been included. To demonstrate the method
several illustrative examples are carried out
for various types of transients and the results
for finite wall heat capacity are compared with
those for zero capacity. The capacity has a very
substantial effect in reducing the time response
of the surface temperatures.

The equations given here were derived on
the basis that the entire channel is initially
isothermal at the entering fluid temperature.
This is not really a restrictive assumption since
any initial condition can be conveniently
treated without altering the computational
method by starting the transient at a fictitious
earlier time when the channel is isothermal.
For example, if it is desired to begin from a
steady state with uniform wall heating the
whole process is started at an earlier time when
a uniform flux 1s applied, and then after sufficient
time for steady state to be reached the desired
transient flux is imposed. The time scale is
then shifted so zero at the instant the desired
transient was applied.
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APPENDIX

Below are given the general relations for
computing Q at any X, @ location designated
by point m,r in Fig. 2b.

Form >r,
r—1
1 (46
Q’"L,T = K {—Z——N ( ng,o + 2 Z Qym,a + ng,r)
40 <

- 'ﬁ Qm,t — 40 (Qm—r+1,1
t=1

+ Qm_r+zyg + PR + Qm—l, T‘l)

[+ o]
.
2 15 [0m i (e749)
/ Fi46 :
P "

= 2eFRrmDAO | o FEr=240) L Oy pia
(e-r,.=(r—1)A@ _ 2e—1v',,=(r—2)A(~) + e—l",.’(r—3m@)

T e S ) }
(AD)
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where + 201, r-ms1+ 2Q2, r-m+2 -+ ...
__A@( I l) n 1 | © :
2\ 34540 +2Qm—2,r-2+2Qm—1,r—1)—ZZEZ@
2 - o P46 n=l
t 46 Z CF {Qgo,_ [e77™49 (— F3 40 — 1)
n=1
Form <r, + e P DAO) L Oy iy [€7F4O
1 1460 =1 2 PAm—DAO =R ln=240] L Oy iy
Qm,r = 1—< [f\l (Qym,o +2 Z ng,.;
— [e—F,.’(m—l)A@ . ze——F,,’(m— 2460 + e-F,,”(m—3)A@]
r—1
46 40 + oo+ Om-1,r—1 (77249 — 2¢—72240 4 1)}]
+ ng,r) - W Z va t —2— (QgO.r*m
=1 (A2)

Résumé—La convection forcée entre deux plaques paralléles est étudiée dans le cas d’un fluide a
propriétés constantes. Les plaques ont une capacité thermique finie et la chaleur leur est fournie
suivant ’axe, simultanément, de fagon arbitraire. La paroi est supposée suffisamment mince ou trés
conductrice de fagon 4 pouvoir négliger la variation de température dans I’épaisseur. La température
du fluide est variable dans la section de la conduite, mais on suppose la vitesse du fluide constante.

L’équation de I'éncrgie est laminaire. On donne une méthode générale de résolution et quelques
exemples. En particulier, on traite le cas d’un chauffage uniforme de la paroi avec variation sinu-
soidale en fonction du temps et celui d’un chauffage sinusoidal en fonction de la distance axiale et

exponential en fonction du temps.

Zusammenfassung-—Der Wirmeiibergang an eine Fliissigkeit mit gleichbleibenden Stoffwerten wird
fiir Zwangskonvektion zwischen zwei parallelen Platten analysiert. Die Platten besitzen eine endliche
Wairmekapazitdt und es wird ihnen sowohl hinsichtlich der Zeit als auch der achsialen Richtung
beliebig Wiarme zugefiihrt. Die Wand ldsst sich als geniigend diinn oder gut leitend annehmen, sodass
die Temperaturdnderung innerhalb der Wanddicke vernachlissigt werden kann. Die Fliissigkeits-
temperatur ist verdnderlich {iber den Kanalquerschnitt, doch ist die Strémungsgeschwindigkeit im gan-
zen Kanal als konstant angenommen (Kolbenstromungsbedingung). Die Energiegleichung ist
laminar. Eine allgemeine Losungsmethode ist angegeben und einige anschauliche Beispiele sind
ausgefiihrt. Sie umfassen gleichméissige Wandheizung mit sinusformiger Zeitabhidngigkeit bzw. ldngs
des Kanals sinusférmig verinderliche Beheizung und exponentielle Zeitabhingigkeit.

AxHoranusi—PaceMaTpuBaeTcsi MepeHOC TeIld B CPeLy ¢ HOCTOANHBIMU CBOHCTBaMII TP
BBIHYIK/IEHHOI KOHBEKI[IM MEHIY TBYM ST IIAPATIbHBIMUI HIIACTIHAMIL, MM EIOLIIIM H KOHeUHY 10
TeIUIOEMKOCTE. TeIro MOABOIUTCH K IIIACTHHAM IIPOH3BOILHO KAK IO OCH, TAl M BO BPEMECHM.
CreHKa TPe;NoIaraeTeA JOCTATOUHO TOHKOM (XOPOIIO IIPOBOJIUT TEILIO), TAaK YTO TeMIIepaTyp-
HBIMUM M3MEHEHUAMH II0 ee TOJINMHE MOKHO mpeHeOpeub. TemmepaTypa cpejpnl llepeMeHHa B
HOTIEPEYHOM CeYeHUM, & CKOPOCTh ee IPEAI0JIaraeTcA OCTOSHHON BO ReceM Kanaje (yCIOBHE
TMOABYINEr0 Te4eHUA). YpaBHEHHe DHePruM sBJIAercA JaMuHApHBIM. JlaeTca obmmit MeTOxR
pellleHus, MLTIOCTPUPYEMBII HEeCKOJIBKUMHU TIpuMepamu. B mnpumepax paccmarpuBaeTcd
PABHOMEPHBI HATPEB CTEHKH, U3MEHAONNHACA CUHYCOMIANLHO BO BDEMEHH, 1 HATPEB, U3Me-
HeAIUiCA CUHYCOHAATIbHO II0 OCH U DHCIIOHEHLMATBHO BO BPEMEHI.




